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Abstract: In 2009, two major surveys in the Governments Division of the Census Bureau 
were redesigned to reduce sample size, save resources, and improve the precision of the 
estimates.  We developed a new decision-based estimation method in which the 
collapsing of strata either by state and government type or by small and large size was 
determined by a series of hypothesis tests of the equality of fitted coefficients in linear 
relationships between attributes and their values in the previous census year.  In this 
research, we study design-based variance estimation by a bootstrap method, for the new 
decision-based stratified regression estimates applied to the Annual Survey of Public 
Employment and Payroll. The bootstrap method, which goes beyond available theory, is 
validated through a small simulation study. We use the data from the 2007 Census of 
Governments Employment to illustrate our methods. 
  
Key Words: survey design, decision-based estimation, re-sampling method, bootstrap, 
mean squared error  
 
1. Introduction 
 
The Annual Survey of Public Employment and Payroll (ASPEP) provides current 
estimates for full-time and part-time state and local government employment and payroll 
by government function (i.e., elementary and secondary education, higher education, 
police protection, fire protection, financial administration, judicial and legal, etc.).  This 
survey covers all state and local governments in the United States, which include 
counties, cities, townships, special districts, and school districts.  The first three types of 
governments are referred to as general-purpose governments as they generally provide 
several governmental functions.  School districts cover only the education function.  
Special districts usually provide one function code, but can provide more than one 
function. ASPEP is the only source of public employment data by program function and 
selected job category.  Data on employment include number of full-time and part-time 
employees, gross pay, and hours paid for part-time employees. Reported data are for the 
government’s pay period that includes March 12.  Data collection begins in March and 
continues for about seven months.  
 
There are 89,526 state and local government units in our universe.  In 2009, after 
exploring possible cut-off sample methods for ASPEP, we developed a new modified 
cut-off sample method based on the current stratified probability proportional-to-size 
sample design in order to reduce the sample size, save resources, and improve the 
precision of the estimates.  Additional benefits from using this modified cutoff sample 
design are to reduce respondent burden, improve data quality, and increase physical 
efficiency. The modified cut-off sample method is applied in two stages. We first select a 
state-by-governmental type stratified probability proportional-to-size (PPS) sample.  The 
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PPS sample is based on total payroll, which is the sum of full-time pay and part-time pay, 
from the Employment portion of the 2007 Census of Government.  In the second stage, 
we construct a cut-off point, to distinguish small and large governmental units in the 
stratum.  Then we sub-sample in the substratum with small-size governmental units.  
 
The design is specified by two parameters: (1) the cut-off point, which determines how to 
construct size-based substrata; and (2) the small-unit sub-sampling rate, which is the 
proportion of small government units to be sampled randomly. We know the cut-off must 
be between the minimum of total payroll in 2007 and the maximum of payroll in 2007, 
and the reduction rate must be between 0 and 1.  The whole design is supported by the 
following Lemma.    
 
Lemma 1: Suppose a sample S is a probability proportional to size (PPS) sample with 
sample size n drawn from universe U of known size N.  Suppose further that the sub- 
ample Sm ⊂ S  is to be drawn by simple random sampling taking m out of n.  Then, Sm  
is a PPS sample with size m, and the second-order inclusion probabilities for distinct 
pairs of elements of the sub-sample are also proportional to the corresponding joint 
inclusion probabilities for the sample S. 
 
Proof: Let the size measure zi be known for all elements i∈U . Then, the inclusion 

probability is π i = P(i∈ S) = nzi ∑ zk  subject to the constraint that 
k∈U

n ⋅max zk ≤ ∑ zi  and the joint inclusion probability isπ ij .  
k∈U i∈U

The second stage conditional inclusion probabilities are 
m m n

               P(i∈ Sm | i∈ S) =  and P(i, j∈ Sm | i, j∈ S) =         for i ≠ j  
n 2  2

Then the first and second order inclusion probabilities for the sub-sample Sm are given by 

                    * m m(m −1)π i = P(i∈ Sm ) = π i   and π *
ij = P(i, j∈ Sm ) = π  

n n(n −1) ij

Thus, Sm  is a PPS sample with joint inclusion probabilities for distinct elements 
proportional to those in the sample S before sub-sampling.  
 
Figure 1 illustrates how the modified cut-off sampling method works. Using full-time 
payroll in California Special Districts as an example, we first apply the probability 
proportional-to-size sample method to select the sample S in Figure 1. Second, the size-
based substrata are constructed by applying the cumulative square root frequency method 
to determine the cut-off point with respect to the size of units in the problematic special 
districts.  Thus, we see sub-stratum with small governmental units on the left hand side of 
the vertical cut-off line and the sub-stratum with large governmental units on the right 
hand side of the line. Third, we sub-sample in the small-unit sub-stratum. We keep all 
large governmental units and draw a simple random sample without replacement in the 
small-unit sub-stratum. The units with red “+” were eliminated from the sample in the 
second stage.  
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Figure 1: Illustration of the modified cut-off sample method for special districts in 
California for full-time payroll versus the size of the government units, which is 
total pay 

 
Source: U.S. Census Bureau. 2002 Census of Governments: Employment 

 
2. Decision-Based Estimation 
 
We explore the formula for estimating the survey total of key variables: full-time 
employment, full-time payroll, part-time employment, part-time payroll, and part-time 
hours. Let Z, the total pay from the most recent (2002) census, be the size variable used 
in PPS sampling. A general estimation formula for estimating the total is:  
                                                         ∑

∈

=
Si

iiy ywt


                                                        (1) 

where the weights, iw , may depend on the survey design, attributes, and auxiliary data.  
 
When iw  is a function of survey design only, to be unbiased the estimator (1) must be a 
Horvitz-Thompson (H-T) estimator with weight iπ1 , where iπ  is the inclusion 
probability for unit i.  Model-assisted estimators of the type (1) can have weights which 
are functions of survey weights, design-based estimators of frame-population parameters, 
and auxiliary data. When the regression predictor X is the same variable as Y from the 
most recent census, the single stratum weighted regression (GREG) estimator is  
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The same estimator (2) can also be shown (Sarndal et al. 1992, Deville and Sarndal 1992) 
to arise as a calibration estimator which uses calibrated weights, chosen as close as 
possible, according to a weighted-sum-of-squares distance function, to the original 
sampling design weights iπ1 while also respecting a set of constraints, the calibration 
equations  
                                       ∑ ∑

∈ ∈

=
Si Ui

iii xxw , Nw
Si

i =∑
∈

                                                (3) 

where the values ix  are ‘auxiliary’, with population total assumed known. That is, the 
GREG estimator (2) is known to be algebraically identical to (1) if the calibrated weights 

iw  are defined to minimize  ∑ −
S iii w 2)1( ππ  subject to the constraints (3). Since the 

calibrated weights in GREG estimation depend on the responses iy , the GREG estimator 
(2) is actually nonlinear in the iy .  
 
Cheng et al. (2009) proposed a decision-based method to improve the precision of 
estimates and reduce the mean square error of weighted survey total estimates.  The idea 
was to test the equality of linear regression lines to determine whether we can combine 
data in different substrata. In Cheng et al. (2009), equality of regression lines is tested in 
two steps. First, a test is performed of the null hypothesis that the slopes are identical. If 
the P value is less than 0.05, the null hypothesis is rejected in favor of the conclusion that 
the regression lines are significantly different.  In this case, there is no reason to compare 
the intercepts.  If the P value for comparing slopes is greater than 0.05, the null 
hypothesis of equality of slopes cannot be rejected, but intercepts can be compared.  If 
the regression lines for the two substrata are not found to be significantly different, then a 
single line is estimated from the combined substrata.   
 
One might ask whether two substratum regression lines with roughly equal slopes might 
actually be different in our context, that is, might be parallel rather than identical. To 
examine this possibility, we estimated the slopes and intercepts for substratum data sets 
in selected state-by-type strata, using 2002 and 2007 Census data. Our data analyses led 
us to observe that we never rejected the null hypothesis of equality of intercepts when we 
could not reject the null hypothesis of equality of slopes. This makes sense because the 
2007 payrolls can be 0 essentially only if the 2002 payrolls are. Thus, we decided to 
perform our hypothesis tests for equality of substratum regression lines strictly by testing 
equality of slopes. 
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Figure 2: Linear fits for small and large special districts in California for full-time 
payroll versus a single linear fit for data combining small and large special districts 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: U.S. Census Bureau. 2002 and 2007 Census of Governments: Employment 
 
Figure 2 displays how the decision-based approach works on small government units as 
compared with large government units. We use full-time payroll in California as an 
example.  The two solid straight lines are linear regression fits for small and large special 
districts.  They are not the same, but have very similar slopes and a small difference 
between two intercepts.  Since we cannot reject the null hypothesis of equality of the 
model coefficients and claim model coefficients are significantly different, we combine 
the small and large government units to reduce model error when we apply the model fit 
for a combined stratum including both small and large units. The dotted line is the best 
linear fit for the combined stratum.  
 
Now, we test the null hypothesis 210 : bbH = , that is, the equality of the frame 
population regression slopes for two substrata. From equation (2), the model-assisted 
slope estimator,b


, can be expressed within each stratum using the PPS design weights as  

                                  
2

,, )(1)(1 NtxNtxyb x
Si

i
iSi

xii
i


ππ ππ ∑∑

∈∈

−−=                    (4)               

where ∑
∈

==
Si i

tN
ππ
1

,1


. In large samples, b


 is approximately normally distributed with 

mean  b  and a theoretical variance denoted ∑ . Under the null hypothesis, starting from 
two sub-strata 1U , 2U  with samples 1S , 2S of sizes 1n , 2n and slope estimates 21 ,bb


, 
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we have ),0(~ 2,121 ∑− Nbb


, where  212,1 +∑∑=∑ . Therefore, the test statistic 
becomes  
                                           2

121
1
2,121 ~)()( χbbbb


−∑− −                                                (5) 

We will discuss the variance estimator for b


 in the next section. The critical value for a 
test based on (5) is obtained from chi-squared percentage points with 1 degree of 
freedom.  If the P value is less than 0.05, we reject the null hypothesis and conclude that 
the substratum population regression slopes are significantly different. 
 
Combining the hypothesis test and GREG estimator, we can explicitly express the 
decision-based estimator formula based on sampled data in two substrata in terms of the 
outcome of the hypothesis test of 210 : bbH = . If we cannot reject the null hypothesis, 
then the slopes estimated in 1S  and  2S  are accepted as the same, and the decision-based 
estimator is equal to GREG estimator for the union of two sample sets, that is, for 

21 SSS ∪= . Otherwise, the decision-based estimator is the sum of two separate GREG 
estimators of stratum totals, that is,                                                             
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where regyt ,


 denotes the GREG estimator from equation (2) for the combined stratum S, 

while  h
regyt ,


 denotes the GREG estimator from  (2)  for the total of substratum  h  units 

based on hS  sample data. 
 
Table 1 shows real data examples of the hypothesis test statistics and decisions in the 
hypothesis test of  210 : bbH = .  The Table contains 18 tests for 3 variables (full-time 
payroll, full-time employment, and part-time payroll), 4 states (1=Alabama, 5=California, 
39=Pennsylvania, and 50=Wisconsin), and 2 government types (30=sub-counties and 
40=special districts). 
 
Table 1: Test results for decision-based using 2007 employment census data 

  FT_Pay FT_Emp PT_Pay 
(State,Type) Test-Stat Decision Test-Stat Decision Test-Stat Decision 

(1,30) 2.06 Reject 2.04 Reject 3.62 Reject 
(5,40) 0.98 Accept 1.02 Accept 0.29 Accept 
(39,30) 0.54 Accept 0.62 Accept 0.08 Accept 
(39,40) 0.24 Accept 0.65 Accept 1.09 Accept 
(50,30) 0.57 Accept 0.85 Accept 2.11 Reject 
(50,40) 1.33 Accept 0.85 Accept 2.52 Reject 

Source: U.S. Census Bureau. 2007 Census of Governments: Employment 

 
We display two real examples with 2007 Census of Governments: Employment data. 
Figure 3 shows three sample-weighted linear regressions fitted to the small-unit and 
large-unit substrata and the combined stratum, for California Special Districts with part-

if   H0  is accepted 

                                                                               
if   H0  is rejected 
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time payroll as the response variable. The test statistic is 0.289, which is less than 1.96, 
so that the decision-based estimator is the GREG estimator (2) for the combined stratum.  
 

Figure 3: Decision-based estimation for California special districts  

 
Source: U.S. Census Bureau. 2002 and 2007 Census of Governments: Employment 
 
Figure 4: Decision-based estimation for cities and towns in Alabama 

 
Source: U.S. Census Bureau. 2002 and 2007 Census of Governments: Employment 
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Figure 4 similarly shows substratum and combined-stratum sample-weighted linear 
regressions fitted for Alabama sub-county government units, also with part-time payroll 
as y-variable. But in this second example, the test statistic is 3.616, much larger than 
1.96. Thus, the decision-based estimator is the sum of the GREG estimators for the small- 
and large-unit substrata.  
                                                  
3. Variance Estimation for the Decision-Based Estimator 
 
In order to compute the variance estimator for survey estimates based on unequal 
probability sampling, whenever possible we apply Horvitz-Thompson variance 
estimators such as the classical Sen-Yates-Grundy estimator. Such estimators rely on 
design joint inclusion probabilities, which can be laborious to specify for PPS selection 
methods without replacement. For at least one commonly used PPS without-replacement 
design,  Vijayan’s (1968) extension of a method of Hanurav (1967), this is now easy in 
SAS: the Vijayan-Hanurav design is the default PPS method in the new SAS sample 
selection procedure, PROC SURVEYSELECT, which is now used in selecting PPS 
samples within state-by-government type strata in the Annual Survey of Public 
Employment and Payroll. The formula-based joint inclusion probabilities can be 
computed directly and stored using options in PROC SURVEYSELECT. 
 
However, a convenient and generally accurate approximate variance formula which 
avoids the need for joint inclusion probabilities is the PPS with replacement (PPSWR) 
variance estimator 

                                              ∑
∈

−
−

=
Si

iy zz
n

ntV 2)(
1

)(


                                             (7) 

where 
i

i
i

y
z

π
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z 1
. The PPSWR variance estimator usually overestimates 

the true variance slightly.  
 
We adapt the PPSWR variance formula to cover the GREG estimator (2) based upon a 
PPS sample, as follows. The PPSWR approximation for the theoretical variance (within a 
single stratum) is  

                                                     ∑
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where ip  is the single-draw probability of selecting a sample unit i and ii np=π  for a 
PPS sample of size n, and ie  is the population regression residual. The variance is 
estimated by the quantity (incorporating an estimated regression residual) 
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The variance of b


, the GREG slope estimator in equation (4), is needed in each 

substratum for the hypothesis test statistic of equal substratum regression slopes. To 
estimate this variance, we again adapt the PPSWR approximation to express the 
theoretical variance of  b


 as  
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and to estimate it by  
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Based upon the estimator (9), we produce a naive variance estimator NV


 for the decision-

based stratified GREG estimator. Using sample data from two substrata as in (6), the 
decision-based estimator is either the GREG estimator on the stratum formed as the union 
S of substrata when 210 : bbH =  is accepted, or is the sum of separate substratum 
GREG estimators when this hypothesis is rejected. In the case of accepting the null 
hypothesis, NV


 is the whole-stratum variance estimator (9); when the hypothesis is 

rejected, NV


 is defined as the sum of the separate substratum estimators (9). This is a 
naïve variance estimator, in the sense that it ignores the randomness inherent in the 
hypothesis-test-based decision, and treats that decision as though it were known in 
advance. Such a variance estimator might be expected to work well in settings where 
almost all of the P values for estimated differences of high- and low-z substratum slopes 
are very large or very small. (This requirement is only that each state-by-type hypothesis 
test is extremely decisive, not that all the decisions, to combine or not to combine high 
and low-z substrata, come out the same way.) However, if many of the pooling decisions 
are not extremely clear, then one might expect that the extra variability involved in the 
pooling decisions ought to inflate the variances of the estimated totals beyond what these 
naïve estimators say. 
 
We now proceed to develop and validate a more sophisticated estimator of the variance 
of the stratum-wise regression estimator following decision-based pooling, using 
bootstrap and Monte Carlo methods, and to examine the extent to which it exceeds the 
naïve estimators of variance. 
 
4. Bootstrap and Monte Carlo Variance Estimation  
 
In statistical estimation problems based on complicated or multistage decisions, bootstrap 
methods have become an essential and theoretically supported tool for variance 
estimation (Shao and Tu, 1995). To some extent, the bootstrap methods have also been 
shown to generate valid variances and sampling distributions for estimators based on 
surveys, at least under stratified SRS survey plans. In the present context, where PPS 
sampling is used within (state by government-type) strata, the bootstrap theory would 
apply in large-sample settings in which almost all or almost none of the bootstrap-
resampled hypothesis tests for equality of substratum slopes would reject. However, in 
such settings the Naive variance estimator described above also has large-sample 
theoretical justification. Moreover, the attractive feature of the decision-based estimation 
strategy is to allow pooling in those strata where the test does not reject, and the 
proportion of these is in practice clearly different from 0 and 1. Data analyses in a 
selection of six state-by-type strata are summarized in Table 1, showing that the 
hypothesis testing decisions will in fact not always be extremely clear, and will be 
sometimes to pool the small- and large-unit substrata and sometimes not. 
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Bootstrap methods generally involve drawing many replicate with-replacement samples 
with equal probability and fixed size from each stratum of a survey dataset and re-
analyzing each of these bootstrap survey-samples using exactly the same steps which 
were used in the estimation method under study. In our setting, consider the case of a 
single state-by-type stratum in which a PPS sample of size n is drawn, and in which the 
stratum is initially decomposed further into sub-strata of small and large units, with 
respective sample sizes 1n  and 2n . Bootstrap samples of respective sizes  1n  and 2n  are 
drawn with equal probability from 1n  and 2n sampled governmental units in the original 
substrata. The bootstrapped attribute samples ** , ii yx  in the two substrata are used to 

estimate simple weighted linear regression slopes *
jb


 for j = 1 and 2, and the hypothesis 
test of equality of slopes is conducted by respectively rejecting or accepting according as  

                                   96.1
])()([

||
2/12*
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                                              (12) 

where the standard errors in the denominator are estimated as in (11). In case of 
acceptance, denoted 1* =T , the bootstrap estimator *

,decyt


 is the whole-stratum y-total 

regression estimator, and otherwise when 2* =T , the decision-based bootstrap estimator 
is the sum of the two substratum estimators. The bootstrap naïve variance estimator *

NV


 
is calculated from the bootstrap sample, using the PPS (with-replacement) variance 
formula either based on 1 or 2 substrata (according to whether 1* =T  or 2) as though the 
hypothesis test outcome were known a priori. This bootstrap replication is repeated B 
times, producing triples  b

decyt *
,


 , b

NV * , and bT *  for b = 1, 2, …., B.  
 
The bootstrap variance estimator for the decision-based y-total estimator decyt ,


 is then the 

sample variance of the B bootstrap replicates b
decyt *

,


 for b = 1, 2, …, B , and our objective 

is to compare it with the naïve estimators  )( ,decyN tV


 and the sample mean of b
NV *  for b 

= 1, 2, …, B.   
 
As mentioned above, we expect the bootstrap variance estimators to be roughly valid and 
roughly equal to the naïve estimators in situations where the bootstrapped rejection 
indicators are nearly all 1 or nearly all 0. However, in settings where the bootstrap 
proportion of rejections is well away from 0 or 1, we should expect differences. 
Moreover, such cases are similar to bootstrap examples where Shao (1994) has shown (in 
a similar but simpler setting of estimation of a mean following a hypothesis test) that 
bootstrap sample sizes should be much smaller than their respective substratum sizes kn  
in order to provide consistent distribution and variance estimates for bootstrapped 
statistics dependent on the outcome of a hypothesis test. However, since the reason for 
the inconsistency was the mixture distribution for the final estimator resulting from the 
proportion 0.05 of cases where rejection occurs, we viewed the inconsistency as possibly 
a subtle or second-order effect and experimented only with bootstrap substratum samples 
of the same sizes as the original samples. We describe next a simulation study performed 
to explore the performance of bootstrap variance estimation in this setting. 
 
We use Monte Carlo simulated artificial superpopulations to check the validity of 
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bootstrap and naïve variance estimates. In this validation experiment, we begin by 
simulating an artificial superpopulation of two substrata of respective sizes 1N , 2N  and 
hold that superpopulation fixed. We then draw independently, successively over a large 
number R of Monte Carlo replications, PPSWR subsamples of 1n  and 2n  elements from 
the two substrata. Within each such sample indexed by   r=1,…,R,   we compute the 
decision-based estimator and its naïve variance estimator, and perform  B  bootstrap 
replications.  
                         
5. Data Simulation and Numerical Results 
 
We describe in this Section the results of a simulation study to compare bootstrap and 
naïve variance estimators for the decision-based y-total estimators, and to assess the 
quality of the bootstrap variance estimator (always based on bootstrap samples of the 
same sizes 1n  and 2n  as the original samples drawn. 
 
In this simulation, the attributes ),( ii yx are jointly generated from fixed and known 

probability distributions, according to the following steps. For fixed 1N , 2N , we generate 

21 NNN +=  independent identically distributed variates ix  fro m a Gamma (α,  β) 

distribution with specified mean and variance. Then the indices with the 1N  lowest ix  
values, say all i for which ix  is less than c, define substratum 1, with the remaining 

indices in substratum 2. Let 1U  and 2U ,  respectively denote the substratum index sets. 
The frame-substratum survey totals hxt ,  for h=1,2,  are fixed in each superpopulation to 

be the respective ix  totals over all indices hUi∈ .  
 
We generate  ),0(~ 2

hhi Ne σ ,   independently of each other and the ix  values, for the 

hN  indices hUi∈  , for  h = 1 and 2.  Next, we generate iy  according to the rule 
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The purpose of this model definition is to allow patterns of  expected (x, y) dependence 
encompassing equal lines, lines with differing slopes (but same intercept), and quadratic 
curves. 
 
 Finally, the substratum samples of size 21 ,nn  are drawn PPSWR within each substratum 
with size-variable equal to the same ix  values, i.e., the PPS inclusion probabilities within 
each substratum are taken proportional to the ix  values. The PPSWR sample weights 

within substratum  h  are  hih
Uj

jhihi Uixnxw
h

∈== ∑
∈

,1 π . 

Table 2 lists the parameters ),,,,,( 2
2

2
1321 σσdaaa  used in our data simulations, along 

with the frame and sample sizes. All of the ix values in these experiments were simulated 
as Gamma (9, 3/2), with these parameters chosen so that the ix  have mean 6 and standard 
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deviation 2. Note that although the 21 , NN  values chosen here result in two substrata of 
relatively balanced size, the low-size substratum is generally much larger in the 
Governments survey within each state-by-type stratum, so that further simulations will be 
needed in the future to understand the impact of these results. 
 
Table 2: Data Simulation Parameter Table 
 
Examples 1a  2a  3a  D σ1 σ2 n1 n2 N1 N2 

1 0 2.0 0.2 0.0 3 3 40 60 1500 1200 
2 0 2.0 0.0 0.2 3 3 40 60 1500 1200 

3 0 2.0 0.0 0.4 3 3 40 60 1500 1200 
4 0 2.0 0.0 0.6 3 3 40 60 1500 1200 

5 0 2.0 0.0 0.6 4 4 40 60 1500 1200 
6 0 2.0 0.0 0.8 4 4 40 60 1500 1200 

7 0 2.0 -0.1 0.8 4 4 40 60 1500 1200 
8 0 2.0 0.2 0.0 3 3 20 30 1500 1200 

9 0 2.0 0.0 0.2 3 3 20 30 1500 1200 
10 0 2.0 0.0 0.4 3 3 20 30 1500 1200 

11 0 2.0 0.0 0.6 3 3 20 30 1500 1200 
12 0 2.0 0.0 0.6 4 4 20 30 1500 1200 

13 0 2.0 0.0 0.8 4 4 20 30 1500 1200 
14 0 2.0 -0.1 0.8 4 4 20 30 1500 1200 

15 0 2.0 0.0 0.0 3 3 30 45 1500 1200 
16 0 2.0 0.0 0.0 4 4 30 45 1500 1200 

17 0 1.6 0.0 0.0 3 3 30 45 1500 1200 

18 0 1.6 0.0 0.0 3 4 30 45 1500 1200 
19 0 1.6 0.0 0.0 3 5 30 45 1500 1200 

20 0 1.3 0.0 0.0 3 5 30 45 1500 1200 
Source: Parameters used in simulating data, for illustrative purposes only 
 
Now, we define null hypothesis reject rates for decision-based methods. Prej.MC is the 
proportion of rejections in the hypothesis test for equality of slopes in the Monte Carlo 
method, and Prej.Boot is the proportion of rejections in the hypothesis test for equality of 
slopes over all  R*B  bootstrap-by-superpopulation replications.  
 
In the tabulated simulation results, we exhibit naïve and empirical Monte Carlo and 
Bootstrap variance estimators, as well as Mean Square Errors for both the decision-based 
survey estimates (DEC.MSE) and the estimates which always use 2 substrata (2str.MSE). 
The naïve variance estimators for Monte Carlo and Bootstrap are averages over replicated 
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naïve variance estimators, respectively, that is, ∑
=

=
R

r

r
naivnaivMC V

R
V

1
,

1
 where r

naivV  is the 

naïve variance estimator from (9) for the r’th Monte Carlo replication, and 

∑∑
= =

=
R

r

B

b

rb
naivnaivBoot V

RB
V

1 1
,

1
 where rb

naivV  is the naïve variance estimator for the b’th 

bootstrap replication within the r’th Monte Carlo replication. The empirical variance 
estimators for Monte Carlo and Bootstrap are respectively the sample variances of the 
decision-based estimates and the averages over the Monte Carlo replicated Bootstrap 
sample variances.  
 
Table 3: Simulation results with R=500 and B=60. Columns 2-3 contain rejection 
probabilities, columns 4-7 square roots of estimated variances, and 8-9 empirical 
MSE’s. 
 
Ex. Prej. 

MC 
Prej. 
Boot 

MC. 
Emp 

MC. 
Naiv 

Boot. 
Emp 

Boot. 
Naiv 

DEC. 
MSE 

2str. 
MSE 

1 .796 .719 991.8 867.9 863.6 846.9 832904 819736 

2 .098 .231 920.6 873.2 871.4 856.4 846843 857654 

3 .126 .277 908.3 868.6 903.2 847.0 826142 845332 

4 .258 .333 880.9 874.7 862.8 850.6 777871 779790 

5 .144 .249 1159.5 1139.0 1192.1 1111.4 1346545 1351290 

6 .258 .339 1173.5 1144.1 1179.1 1113.7 1374466 1401604 

7 .088 .217 1167.7 1148.4 1165.3 1126.7 1361384 1397779 

8 .582 .601 1288.2 1209.1 1229.4 1149.8 1656195 1656324 

9 .108 .236 1174.0 1169.4 1291.3 1118.7 1376302 1432493 

10 .164 .283 1377.3 1186.0 1211.2 1129.8 1907303 1992299 

11 .188 .301 1339.1 1179.6 1236.7 1128.6 1791618 1890654 

12 .108 .261 1612.1 1609.8 1676.6 1529.5 2594122 2648593 

13 .212 .322 1654.3 1566.3 1668.9 1497.1 2736425 2762037 

14 .116 .254 1559.8 1564.5 1642.6 1490.9 2456142 2563424 

15 .100 .230 982.3 961.4 973.4 924.4 963009 985644 

16 .120 .264 1319.8 1308.3 1307.6 1264.3 1738460 1799603 

17 .102 .243 984.0 988.1 995.2 959.9 966444 999423 

18 .074 .220 1105.0 1106.0 1134.6 1076.1 1219898 1252016 

19 .078 .217 1301.8 1236.2 1211.6 1203.4 1696521 1712228 

20 .102 .235 1305.1 1256.5 1275.1 1223.4 1700264 1739345 
Source: Data are simulated for illustrative purposes only 
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The formulas are 2

1
,,, )(

1
1 ∑

=

−
−

=
R

r
decy

r
decyEmpMC tt

R
V


  and  ∑

=

=
R

r
rEmpBoot S

R
V

1

2
,

1
, where 

∑
=

=
R

r

r
decydecy t

R
t

1
,,

1 
 and 2

rS  is the sample variance of  },1,{ , Bbt rb
decy 


= .  Of these 

variances, MC.Emp best estimates the true variance of  decyt ,


 for the simulated 
superpopulation and sample design, and Boot.Emp  estimates the average of variance 
estimated by the Bootstrap method . 
 
The tentative conclusions from this simulation study are: 

(i) that the bootstrap estimate of the probability of rejecting the null hypothesis 
of equal substratum slopes can be quite different from the true probability; 

(ii) that the Naïve estimator of standard error of  the decision-based estimator is 
generally slightly less than the actual standard error; 

(iii)  that the Bootstrap estimator of standard error is not reliably close to the true 
standard error (the MC.Emp column);  and 

(iv)  that the mean-squared error for the decision-based estimator is generally 
only slightly less than that for the two-substratum estimator, but does seem to 
be a few percent better for a broad range of parameter combinations. 

 
In (iii), although we see discrepancies of no more than about 10 percent in these reported 
simulations, other preliminary simulations with small- and large-unit substrata or more 
unequal size and with longer-tailed distributions for  y  can make the discrepancies much 
greater. 
 
 
6. Future Research 
 
We plan to investigate the large-sample asymptotic properties of the bootstrap in this 
setting. With reference to Shao and Tu (1995), and to simulations not reported here using 
sample sizes 21 ,nn  too large to be practical in the context of Governments Division 
surveys, the existing bootstrap theory works well in a setting with probability 
proportional-to-size with-replacement sampling except under the null hypothesis of equal 
regression slopes. 
 
To supplement the Bootstrap variance estimation techniques, random-groups balanced 
repeated replication (BRR) is worth exploring as an alternative way of estimating 
variances for the decision-based survey estimators described in this paper. 
 
When we applied the decision-based estimators to some real Governments Division 
survey state-by-type strata, and to simulated data with large 1N  and  small 2N  , fairly 
small  21 ,nn , and heavy-tailed distribution for  y  (resulting frequently in some high-
leverage points iy ), we found that the bootstrap variance estimator for the decision-based 
estimator can be several times larger than the Naïve and actual variances. Thus, we 
believe that an important issue for further research is the development of robust or 
outlier-resistant regression techniques in defining decision-based estimators and their 
variance estimators. 
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